
Traffic of particles in complex networks

Renato Germano1,* and Alessandro P. S. de Moura2,†

1Instituto de Física, Universidade de São Paulo, Caixa Postal 66318, 05315-970 São Paulo, São Paulo, Brazil
2Department of Physics, College of Physical Sciences, King’s College, University of Aberdeen,

Aberdeen AB24 3UE, United Kingdom
�Received 5 June 2006; published 25 September 2006�

The study of the information flow through communication networks, such as the Internet, is of great
importance. In the Internet, information flows in discrete units �“packets”�, and the capacity of storage and
processing of information of computers is finite. Thus if there are many packets walking on the network at the
same time, they will interfere with each other. To understand this, we propose an idealized model, in which
many particles move randomly on the network, and the nodes support limited numbers of particles. The
maximum number of packets supported by a node can be any positive integer, and can be different for each
node. We analyze the statistical properties of this model, obtaining analytical expressions for the mean occu-
pation of each node, for different network topologies. The analytical results are shown to be in agreement with
numerical simulations.
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I. INTRODUCTION

In the last years the study of dynamical processes in com-
plex networks has developed rapidly, driven by applications
of concepts of network science in many areas, including
physics, sociology, biology, and others �1–3�. In particular,
the dynamics of information flow in various kinds of com-
munication networks has been much studied �4–9�. One par-
ticularly important communication network is the Internet. In
the Internet, communication between computers is achieved
by means of the exchange of small discrete units of data, the
“packets.” The information flow can thus be understood in
terms of the traffic of particles moving through a network.
Due to the limited capacity of processing and storage of each
computer, for high traffic the particles will interfere with
each other’s motions. The study of this kind of collective
dynamics poses a challenging problem to statistical physics.
One way to try to quantify the effects of high traffic and
congestion is by means of centrality measures such as the
betweenness centrality, which are purely topological quanti-
ties �10–15�. Using this idea, cascades of failures resulting
from the failure of a single node have also been extensively
studied �16–20�. Although topological measures like the be-
tweenness centrality are very useful in the study of informa-
tion transport in networks, they offer only an incomplete
characterization of the dynamics. Models of the full particle
hopping dynamics have been proposed and investigated
�21–31�. However, these models are in most cases too com-
plicated to be solved analytically.

In this paper, we propose a simple model of this dynami-
cal process which embodies many of its main properties, but
which is simple enough as to allow us to obtain some ana-
lytical results. Our point of view is that even though this
model is very idealized, it is, nevertheless, useful in uncov-
ering some of the basic dynamical features of the collective

behavior of the packets in the Internet. In our model, par-
ticles move in a graph �or network�. Each node of the graph
represents a computer in the Internet, and the links mirror the
corresponding connections among the computers. At any
time each particle �or packet� is located at one of the nodes
of the network. The finite capacity of the computers to pro-
cess the packets is modeled by assigning to each node i a
maximum number of particles mi it can support, with mi
�1. mi can be different for each node i, taking into account
the fact that different computers may have different capaci-
ties. Packet motion is modeled by prescribing that the par-
ticles perform a random walk in the network, subject to the
constraint that no particle can move to a node which already
has its maximum allowed number of particles. This con-
straint introduces an effective interparticle interaction which
is responsible for the collective behavior mentioned above.

A particular case of this model was proposed and solved
in a previous paper �32�. In that model, all nodes were con-
strained to be occupied by at most one particle. It was shown
that this made the statistics of the system equivalent to that
of a Fermi gas, which allowed the grand partition function of
the system to be computed analytically, and thus all the sta-
tistical properties were found. The model of Ref. �32� corre-
sponds to mi=1 for all i. In this paper, we propose and study
an extensive generalization of that model, letting mi be
greater than 1, and allowing it to assume different values for
different nodes. This complicates the calculation of the par-
tition function, but we find that by using a mathematical trick
we can find an analytical expression for it. Using this, we
find expressions for the average occupation number of each
node, thus completely characterizing the statistical properties
of the system. Simulations of the constrained particle random
walk confirm the accuracy of the analytical results, which
have no adjustable parameters of any kind. The theory is
tested for Erdös-Rényi and Barabási-Álbert networks, and
the theoretical predictions are confirmed by the simulations
in every case.

This paper is organized as follows. We first briefly review
in Sec. II the results of Ref. �32� which will be used here. We
then generalize the model in Sec. III for arbitrary mi. We
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discuss the conceptual and technical problems brought by the
distinguishability of the particles, and how they can be over-
come by a mathematical trick which allows us to sum the
grand-partition function. We use this general result in Sec. IV
to study the particular case of homogeneous capacity, in
which the mi are the same for all i. An analytical expression
for the occupation number of each node is found for this
case, and tested by simulation in various network topologies.
In Sec. V we tackle the general case of arbitrary mi depend-
ing on i �inhomogeneous capacities�, and we use the expres-
sion for the occupation number thus obtained to study the
interesting case of mi proportional to the degree of the node
i. Simulations are again used to test the theoretical predic-
tions, which are found to be fully verified to within numeri-
cal accuracy. We close in Sec. VI with some remarks and
conclusions.

II. THE CASE mi=1: THE FERMI-DIRAC DISTRIBUTION

We start with a quick review of the results of Ref. �32�
which are relevant to this work. It concerns the case where
mi=1 for all nodes i. In other words, all nodes can support at
most one particle, which is the simplest nontrivial case of the
general model.

It is argued in Ref. �32� that the constraint that no two
particles can occupy the same node works just like the ex-
clusion principle for identical fermions in quantum mechan-
ics. The particles are then analogous to free fermions, and the
nodes are the equivalent of single-particle states of a quan-
tum system. The links can be thought of as selection rules for
transitions among the states. From this correspondence be-
tween the particle dynamics in the network and a noninter-
acting Fermi-Dirac gas, we conclude that the average occu-
pation number of node i is given by the Fermi-Dirac
distribution:

�ni� =
1

e�+��i + 1
, �1�

where �i is the energy associated with the ith node, and � is
related to the chemical potential. �i is determined by the
probability that a single isolated particle performing a ran-
dom walk in the network is found in node i. The result is �see
Ref. �32� for more details�

��i = ln�Cki
−1� , �2�

where ki is the degree �the number of neighboring nodes� of
node i, and C is a constant. This equation relates the energy
of a node to a simple local property of the node, namely the
number of neighbors it is connected to. The “chemical po-
tential” � is determined by prescribing the average number
of particles N present on the network:

�
i

�ni� = N , �3�

where the sum is over all nodes. Since this is a grand-
canonical ensemble, the actual number of particles fluctuates
around N, but for large N these fluctuations are very small.

Equations �1�–�3� allow one to calculate the average oc-
cupation number of any node, for a given network and for a

prescribed �average� number of particles. Simulation results
presented in Ref. �32� confirm the accuracy of these predic-
tions. The generalization of this approach to arbitrary mi
poses new conceptual and technical problems, to which we
now turn our attention.

III. THE PARTITION FUNCTION AND THE ISSUE
OF DISTINGUISHABILITY

Now we generalize from the situation in which at most
one particle can be located at a node to the case in which a
maximum of mi particles can occupy node i. One might be
tempted to assume that the average occupation �ni� should be
given by the so-called Gentile distribution �33�, which de-
scribes hypothetical identical particles whose statistical prop-
erties are in between fermions and bosons. These gentilions
are parametrized by an integer l, and they have the property
that only at most l particles can occupy a quantum state.
Their average occupation number is given by

�ni� =
1 + le−���i−���l+1� − �l + 1�e−���i−��l

e���i−���1 − e−���i−����1 − e−���i−���l+1��
. �4�

The Gentile distribution may at first seem the natural gener-
alization to Eq. �1�, and the solution to our problem. That this
is not true can be seen immediately by observing that the
limit l→� of Eq. �4� is the Bose-Einstein distribution, and
not the Boltzmann distribution, which is the correct one to
describe packets moving independently in the network.

The problem lies in the fact that our particles are classical
entities, and therefore they are distinguishable from each
other, whereas the Gentile �and the Bose-Einstein� distribu-
tion assumes they are indistinguishable. In order to find the
correct expression for �ni�, we must take their distinguish-
ability into account.

Let us denote by �ni	= �n1 ,n2 , . . . 	 a state of the system
with n1 particles in node 1, n2 particles in node 2, etc. The
energy associated with this configuration is �i�ini, with the
single-state energies �i being given by Eq. �2�. The canonical
partition function ZN corresponding to exactly N distinguish-
able particles being in the network is

ZN = �
�ni	

�
N!

n1 ! n2 ! ¯ ni ! ¯
e−��i�ini, �5�

where the multinomial factor n1 !n2 !¯ comes from the fact
that the particles are distinguishable. The symbol �� indi-
cates that the indices ni in the sum have to satisfy the con-
straint �ini=N, besides the constraint resulting from the fi-
nite capacity of the nodes, ni�mi. These two conditions
make it impracticable to perform the sum. We thus go to the
grand-canonical ensemble, a usual expedient in this kind of
situation. The grand-canonical partition function � is defined
by

� = �
N=1

�

e�NZN. �6�

For technical reasons which will become clear in a moment,
we choose to work with the rescaled canonical partition

functions Z̄N, given by
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Z̄N =
ZN

N!
= �

�ni	
�

1

n1 ! n2 ! ¯ ni ! ¯
e−��i�ini. �7�

Since the averages of any measurable quantity are calculated
in the canonical ensemble from derivatives of the logarithm
of the partition function, the predictions for the average oc-
cupation number �ni� are exactly the same using either ZN or

Z̄N. The only issue is that Z̄N has problems with extensivity
�an unusual version of Gibbs’ paradox�. This will not trouble
us, however, because all we are interested in are average
quantities like �ni�.

When we go to the grand-canonical ensemble, we can use

Z̄N in Eq. �6� instead of ZN, and the new grand partition
function will give the same results for average quantities, for
a large enough average particle number. We shall for sim-
plicity denote this grand partition function by the same sym-
bol � we used for the previous one. No confusion should
ensue from this, as from now on this is the only grand par-
tition function we shall use. From Eqs. �6� and �7�, it is given
by

� = �
N=1

�

�
�ni	

�
e−��i��i−��ni

n1 ! n2 ! ¯
. �8�

The sums appearing in the above expression can now be
reordered and expressed as independent sums in the ni, with-
out the global constraint �ini=N:

� = �
n1=0

m1

�
n2=0

m2

¯

1

n1 ! n2 ! ¯
e−���1−��n1−���2−��n2¯. �9�

This is the reason we use the grand canonical ensemble, as
now this expression is manageable. In fact, inspection of Eq.
�9� reveals that the sums can be factorized:

� = 
 �
n1=0

m1 1

n1!
e−���1−��n1�¯ 
�

nj=0

mj 1

nj!
e−���j−��nj�¯ .

�10�

This factorization was only possible because we used Z̄N in
the construction of the grand partition function, which got rid

of the N! factors. This explains our choice of using Z̄N in-
stead of ZN. We again emphasize that this choice does not
affect the physical predictions of the model, and this will be
confirmed by the extensive numerical simulations presented
in the following sections.

From the grand-canonical partition function, we calculate
the average number of particles in state i by

�ni� = −
1

�

1

�

��

��i
= −

1

�

� ln �

��i
. �11�

Using expression �10� for � in the above equation, we get

�ni� =
�n=1

mi 1

�n − 1�!
e−���i−��n

�n=0

mi 1

n!
e−���i−��n

. �12�

Finally, using Eq. �2� to write the energy of a node i in terms
of its degree ki, we have

�ni� =
�n=1

mi 1

�n − 1�!
�Aki�n

�n=0

mi 1

n!
�Aki�n

, �13�

where A=Be� �B=const� contains the contribution of the
chemical potential. This expression has the property that two
nodes with the same degree have the same average occupa-
tion. We also note that �ni�→mi as ki→�, so the highly
connected nodes �hubs� tend to become fully occupied,
which is expected. We observe that for the case of mi=1 for
all i, the above equation reduces to Eq. �1�, and so the Fermi-
Dirac distribution of Ref. �32� is recovered as a particular
case.

The chemical potential �, or equivalently A, is deter-
mined by prescribing the average total number of particles N
present in the network:

−
1

�

� ln �

��
= �

i

�ni� = N . �14�

This equation must be solved for �, given N.

IV. NETWORKS WITH HOMOGENEOUS CAPACITY
„mi=const…

We first test the results of the last section in the case of a
homogeneous capacity network, in which all nodes can sup-
port the same number of particles m. This means that mi
=m=const for all i. This assumption allows us to write the
equation that determines the chemical potential, Eq. �14�, in
terms of the degree distribution pk of the network. Indeed, if
pk is the probability of a node having degree k, we can re-
write the sum as a sum over the degrees, and we get the
following equation:

�
k=1

�

pk

�n=1

m 1

�n − 1�!
�Ak�n

�n=0

m 1

n!
�Ak�n

= 	 , �15�

where 	=N /M is the ratio of the number of particles N to the
number of nodes M—in other words, the particle density.
Given the degree distribution and the particle density, A is
determined by solving numerically Eq. �15�, and its value is
then used in Eq. �13� to find �ni�.

We want to test the predictions of Eqs. �13� and �15� by
means of computer simulations. As described in Sec. I, the
particles perform a random walk on the network, restricted
by the condition that they cannot go to a node that already
has its maximum number of occupying particles, in this case
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m. The algorithm we use to simulate this stochastic process
is as follows. Each time step, a particle is randomly selected
with uniform probability. One of the neighboring nodes of
the node the particle is currently occupying is randomly cho-
sen, also with uniform probability among the neighbors. If
the chosen node can support the additional particle, it moves
there; if the node is occupied to the full capacity, however,
the move fails, and the particle stays where it is. The next
time step starts, another particle is selected, and so on.

A number N�1 of particles is distributed through the
network’s nodes initially in a random way, and then the sto-
chastic process described above is iterated a large number of
times, so that the system reaches equilibrium. Then the pro-
cess is iterated further, and the average occupancy of the
nodes is recorded. This gives us a numerical measure of �ni�,
which we compare with the theoretical prediction of Eq.
�13�.

We use two networks to do the simulations: a random
Erdös-Rényi network with 104 nodes and 105 edges �34�; and
a scale-free network grown using the Barabási-Álbert algo-
rithm �35–42�, with 105 nodes, and an average of six links
per node. We put N=0.3M particles in all simulations, that is,
	=0.3.

We start with the case m=2. In this case each node can
support at most two particles. The mean occupation of each
node is given by Eq. �13� with m=2:

�ni� =
Aki + �Aki�2

1 + Aki +
1

2
�Aki�2

. �16�

The results of simulation are shown in Figs. 1 and 2.
We see that the theory matches very well the results of the

simulation, for both networks. We note that the Gentile sta-
tistics predicts a different result �see Eq. �4��, shown in Fig.
2 as the dashed line. It is clear that the Gentile statistics does

not match the simulation; this is a consequence of the distin-
guishability of the particles.

Figures 3 and 4 display the results for m=3. We see again
a very good agreement between simulation and theory. The
prediction of the Gentile statistics is again clearly wrong. We
have simulated the particle transport in homogeneous capac-
ity networks for some other values of m, and also for some
other network topologies, and we have always found that Eq.
�13� is in almost perfect agreement with the simulations in
all cases.

V. NETWORKS WITH INHOMOGENEOUS CAPACITY

In the previous section we assumed that the capacity mi of
all nodes was the same. In real communication networks,

FIG. 1. Mean occupation �nk� of nodes with degree k, for mi

=m=2, in an Erdös-Rényi random network with 104 nodes, with
	=0.3. Circles are values measured from the simulation, and the
continuous line is the prediction of Eq. �16�. The value of A in Eq.
�16� is found from Eq. �15� to be A=64.02.

FIG. 2. Mean occupation �nk� of nodes with degree k, for mi

=m=2, in a Barabási-Álbert scale-free network with 105 nodes,
with 	=0.3. Circles are values measured from the simulation, and
the continuous line is the prediction of Eq. �16�. The value of A in
Eq. �16� is found from Eq. �15� to be A=17.15. The dashed line is
the prediction of the Gentile statistics.

FIG. 3. Mean occupation �nk� of nodes with degree k, for mi

=m=3, in an Erdös-Rényi random network with 104 nodes, with
	=0.3. Circles are values measured from the simulation, and the
continuous line is the prediction of Eq. �13�.
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however, the processing power of the nodes is distributed in
a highly heterogeneous way. In the Internet, for example,
some computers are much more powerful than others, and
are thus able to forward packets at a much higher rate. In this
section we apply the general results of Sec. III to the case of
nonconstant mi.

The results of the previous section indicate that highly
connected nodes �hubs� have to deal with a high amount of
traffic. It would therefore make sense to have computers with
high capacity assigned to the hubs. We thus assume that the
capacity mi of a node depends only on its degree, mi=m�ki�,
with m�ki� being an increasing function of ki. For definite-
ness, we take

m�ki� = ki. �17�

The number of supported particles of a node is thus propor-
tional to its number of connections. Using this expression for
mi, we can after some elementary manipulations of Eq. �13�
write the average occupation �ni� as

�ni� = Bki −
�Bki�ki+1

ki!

1

�n=0

ki 1

n!
�Bki�n

. �18�

We use Eq. �18�, along with Eq. �14�, to predict �ni�. We
perform simulations following the same procedure described
in the previous section, using mi=ki, for both the Erdös-
Rényi and the Barabási-Álbert networks. The results are
plotted in Figs. 5 and 6. We see that again the theory predicts
very well the results of the simulations.

VI. CONCLUSIONS AND REMARKS

We proposed and analyzed a model of particles randomly
moving in a network, inspired by the motion of information
packets in the Internet. The limited number of particles the
nodes can support introduces an effective interaction among

the particles, which makes this a challenging problem in sta-
tistical physics. The problem is further complicated by the
distinguishable nature of the particles. By using a mathemati-
cal trick, we were able to sum the grand-canonical partition
function and thus derive analytical expressions for the aver-
age occupation number of each node. We have tested the
theory by comparing the predicted results with simulations,
and they have been confirmed to high accuracy.

We have seen that highly connected nodes are populated
preferentially, as the particle density increases. For even
moderate densities, highly connected nodes rapidly become
maximally occupied, which means that they contribute to

FIG. 4. Mean occupation �nk� of nodes with degree k, for mi

=m=3, in a Barabási-Álbert scale-free network with 105 nodes,
with 	=0.3. Circles are values measured from the simulation, and
the continuous line is the prediction of Eq. �13�. The dashed line is
the prediction of the Gentile statistics.

FIG. 5. Mean occupation nk of nodes with degree k, with each
node i supporting at most ki particles, in a random Erdös-Rényi
network with the same parameters as in Fig. 1. The number of
particles is 30% of the maximum number supported by the network
�which is the sum of the degrees of all nodes�. Circles are values
measured from the simulation, and the continuous line is the pre-
diction of Eq. �18�.

FIG. 6. Mean occupation nk of nodes with degree k, with each
node i supporting at most ki particles, in a Barabási-Álbert network
with the same parameters as in Fig. 2. The number of particles is
30% of the maximum number supported by the network �which is
the sum of the degrees of all nodes�. Circles are values measured
from the simulation, and the continuous line is the prediction of Eq.
�18�.
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choking traffic from their neighbors, since particles cannot
move through nodes with maximum occupation. Many real
networks have a scale-free topology, which implies that there
are a few very highly connected nodes �hubs�. These hubs
are fundamental to the efficient transport in the network, and
when they are blocked due to maximum occupation, trans-
port is seriously disrupted. Consequently, in scale-free net-
works congestion tends to happen purely as a result of their
topology. The way to deal with this is to distribute the re-
sources among the nodes inhomogeneously, so that highly
connected nodes can support more particles. As seen in Fig.
6 of Sec. V, even for relatively high particle densities the
highly connected nodes are occupied below their capacity,
allowing traffic to flow freely.

As a last remark, we note that if all nodes can support at
most one particle, we recover the Fermi-Dirac distribution,
as shown in Sec. III. One may find this strange, since we

know from quantum mechanics that fermions �for example,
electrons� are indistinguishable, whereas in the derivation of
Eq. �13� we assumed that the particles were distinguishable.
But there is no contradiction here. It turns out that for the
sole case of mi=m=1, the statistics predicted by our theory is
the same as that predicted by the Gentile distribution, which
assumes indistinguishability �and of course reduces to the
Fermi-Dirac distribution in this case�. In other words, distin-
guishable and indistinguishable particles in this particular
case have the same statistics. This is a particular feature
of m=1, and it is not true for any m
1, as we have seen in
Sec. IV.
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